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Abstract. The interpretation of 0-theoriesin termsof multivaluedwavefunctions
is given.

The notion of 0-vacuawasintroducedby Callan,Dashen,Gross[1] andJackiw,

Rebbi [21 in 1976 for the caseof Yang-Mills field theory. In 1978 Singer [3]
pointed out that the configuration spaceof Yang-Mills field theory is multiply

connected.Then Gawedzki [4], Dowker [5] and Isham [6] showedthat 0-vacua

are closely related to the multiple connectivity of theconfigurationspacein that

theory. Their argumentscoincide with thosecontainedin [7, 8, 9, 10] and con-

cern the problem of aformulation of QuantumMechanicson multiply-connected

regions. In those papers two approacheswere presented:the Feynman path

integral quantization and the representationof the Canonical Commutation

Relations(C.C.R.).
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In this paperwe give the interpretationof 0-theoriesin termsof multivalued
wave functions. The wave function ‘P in quantummechanicsis not physicaly

measurableso there are no reasonsfor its single-valuedness.On the other hand

the observablesare measurableso they aresinglevalued.We formulatepostulates

to be fulfilled by a multi-valued ~,1isuchthat the physicalquantities(observables)
computed in this statebe single valued. We show (Theorems1, 2) that if the
configuration spaceM is multiply-connectedthen multivalued wave functions

are characterizedby charactersof fl1(M). WheneverU1 (M) = 0, the multivalued
wave functions reduceto ordinary single valued functions.Theorems3, 4 gives

the correspondenceand interpretationof our approachin terms of C.C.R. The
charactersof 111(M) denotedby 0 are identified with those introducedin ref.
[1, 2] and can be interpretedas strictly conservedquantumquantities.Thereare

given examplesthat showthe physicalsituationswhere 0 -vacuaappears.

1. 0-THEORIES

Let M be a connectedmanifold interpretedas a configurationspaceof the
system, and (P, fl,M) be the universal covering of M. We considera subset

‘P CM x C
1 with thefollowing properties:

1) prM ‘P = M, whereprM is thenaturalprojectiononto the first factor

2) Vx EM, 3anopenneighbourhoodLI of x mM suchthat

‘P npr~(U)= ~

where ~ are the graphsof C1-functionson U and I is a finite or countableindex

3) Vi,jEI ~ ~ ~ I])Jj4

4) Vi,jEI ~ ~

whereX is an arbitraryvectorfield on U

5) ‘1’ is connected.

The opensubsetsappearingin the postulate2) are calledthe propersubsets,and

functions ~i, a-piecesover U. ‘P-fulfilling 1), 2) will be called the graphof a
multivalued function, or simply a multivalued function. Postulates3), 4) assure

the possibility of defining expectationvalues of positionsand momenta.The
requirement5) reducesmultivalued function to a single valuedone if the multi-
valuednessis not physical.

If the properties1) - 5) aresatisfied,then ‘1’ will be called a multivaluedwave
function. The following theoremscharacterizemultivalued wave functionson M
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THEOREM 1. Let ‘P be a multivalued wave functionsuch that for each proper

subsetUand V1 El, i r�rj.

(*) ~ ~ =

Thenthereexist- a) a character0 of711(M)
b) a C

1 -function ~i :P —÷ C1, non-vanishing and Equasiperiodic~with
respectto 0 i.e.

VpEP, V[w]E11
1(M)

~~(p [w]) = 0([w]) ~~(~)

where <.> meansthe natural right action of111(M)onPsuchthatVx EM
‘P(x)= U ~i(P).

pE 1r~(x)

THEOREM 2. Let 0-be a characterof 111(M) and ~i :P—~-C
1be a C1-function

quasiperiodic with respect to 0. Then, the function ~11(x)= pE~’(X) i~Li(.i.) is a

multivaluedwavefunction.

Let us note that the condition (*) togetherwith the postulate3) imply that

~1iis non-vanishingif I containsmore than one element. This seemsto be not
physical.

Moreover one can easily construct a multivalued wave function ‘I’ which

doesn’tdefine any quasiperiodic~,1i.On theotherhandwe do notneedto assume

that i~(x) ~ 0 in any point x in Theorem 2 and neverthelessthe multivalued

function determinedby ~‘ in this way is still a multivalued wave function. This
observationleadsus to the following conclusion:all physicallyrelevantmultivalu-
ed wave functions are of the type describedby Theorem 2. In otherwords the
true wave functions in quantummechanicsare quasiperiodic functions on the

universalcoveringofM. This statementwill bedemonstratedin examples.

Proof of TheoremI (construction). Let x
0EM be an arbitrary point. We have

‘P(x0) = ~ i1i~(x0)and let us choosean arbitrarypiece ~ In this proof the

indexu will be omitted.

LEMMA 1. Let w : [0, l]—÷M, w(0) =x0 be a path starting at x0 and let ~,Li

satisfy the assumption of Theorem 1. Then there exists a unique lifting
i~ :[0,lJ—s.’Psuchthat

i~~0)=

prMss = w.
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Proof: Case 1 - Let the imageof w be containedin a propersubset.Then ~‘, : =

~jo

= w is the requiredlifting.
Case2 (general)- Using the compactnessof [0, 1] and the definition of

multivalued function we can chooset~,. . . , t,~(0 = t~< t
1 <. . . <t,~= 1) such

that for every i w (ft~,t~+ i’~ is containedin a propersubset.Now we canlift w
stepby step usingCase1.

The uniquenessfollows from the fact that [0, 1] is connected.As a matter of

fact, let i~, ~ be two different lifting. We define
0 ~o

A ={tE[0, 1] :i~’~(t)=i~,
2(t)}

B = {t E (0, 1]: ii’~1(t)~i~~(t)}

AnB=~,AUB=[0,l], OEA.

We will show that A and B are open subsetsin [0, 1] thereforeB = ~. Let

t E [0, 1] and U - be a proper neighbourhoodof w(t). If t EA then ~‘ ‘(t) =

= ~(t) belongsto a certain piece over U. Note that is equal to ~ over U,

becausedifferent piecesbelong by virtue of the assumption(*), to different
arcwisecomponentsof ‘I’ n pr~(U).Thereforew~(u) is the open neighbour-
hood of t containedin A. By the sameargumentB is open. U

LEMMA 2. Let w : [0, 1] —*M, w(0) = x
0-be a path starting at x0 and let ‘1’

satisfy the assumptionsof TheoremsI. Then for every homotopyU : [0, 1] x

x [0, 1] —+M such that U(t, 0) = w(t) there existsa unique lifting U : [0, 1] x

x[0, l]—÷ t~1isuch that

&2(t,0)=~ (t).

The proofis analogousto that of Lemma 1. .

COROLLARY 1. Let ‘P be as in Theorem1. If w ~, w
2 aretwo pathsin M starting

at x
0 and endingat x, and if there existsa homotopyU1suchU0 = w 1, U1 = w

2

and for every t, &2~(0)= x
0, U~(l)= x (we write w’ -~ w

2 rel 0, 1 ), then
~2 rel {0, l} andparticularly

~0 ~O

~,‘ (1) = ~2(1) .

Let us note that U
1(M) acts transitively in ‘11(x) for any x. If

E ‘P(x) then there existsa path i~: [0, 1] —÷ ‘P such that i~(0)=

= ~Li1(x)(postulate5). Thenthe neededelementofir1(M) is [prMw].
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Thosestatementsare quite analogousto those in tile theoryof coveringspaces
[11].

Let us recall the definition of the universalcoveringspacewhich is the most
adequatefor our purposes.

The total spaceP of the universal coveringof M is the set of all homotopy
classesof paths on M starting from x0 rel {0, l}. The fiber overx consistsof

homotopyclassesof paths fromx0 to x rel {0, l}. Let P Ep = [w]. Weput

~i(p)=i~, (1).

By virtue of Corollary 1, this definition does not dependon the choice of
wE[w].

Now let [w] E 111(M,x0). Let us define

The inclusion followes from postulate3. Now we prove that doesnot
0’ ~

dependon the choiceof Let ustakethe function:

[0, l]~t—~.~’,(t)[i~(t)]’ES
1 [w]E11

1(M).

Using the compactnessof [0, 1] we can choose I0, . . . , t~ (0 = I0 < t1 <
= 1) such that w([t1, ~+i’~ in contained on a proper subset. The

Requirement4) shows, that is constanton every It1, t/f 1]~henceit is con-

stanton [0, 1]. In particular

i~’~(l)[iP~(x0)]~ = it’~0(l)[lI10(x0)]~ = O~0~,([w1)

so 0 , i,li ; is ~‘ -independent.
x0 0 0

We concludeby meansof the sameargumentsfor w : [0, 1J—*M suchthat
w(0) = x0, w(l) = x, that for a given multivalued wave function ‘P satysfying

the assumptionof Theorem 1, 0 is a perfectlywell definedcharacterof H1(M).

As a matterof fact, let w1, w2- be two loop at x0. Then

0([st’
1](w 2]) = (w 1 0w2)~(1)[~1í

0(x0)]
1=

= ~ (l)[ili (xe)]’ = 1X’’ (l)[i~ (l)]’ X
w~(1) 0 w2 (1) 5~o

X [it’(l)][l,(i
0(x0)]~

1 = 0([w’I) 0 ([w2]).

The quasiperiodicityof i~i follows from simple calculations.Let p = [ö] and

[w] E 11
1(M,x0). Then

li([b ii’]) = (~w)7(l) = l)(1) =

= ~‘~‘0U)[I,11~(xo)]~ö~(1) = 0([w]) i,I’(p). U
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REMARK 1. It we choosea piece i,1i~, insteadof ~~ti0,then the obtained function
i,li shall differ by a constantU(l)-factorwhich doesnoteffect quantummechani-

cal effects.

REMARK 2. ‘P is of classC’ since‘1’. are.

Proofof Theorem2. Let us define‘1’ CM x C1 by the formula:

‘P(x)= U ~‘(p)
pEEl ‘(x)

Thendirectcomputationshowsthat the postulates1) to 5) hold. •

Now we give anotherrepresentationfor multivalued wave functions.The aim
of the following theoremwill be to describe the stateby a singlevalued func-
tion. This canbe obtainedby a suitableredefinitionof themomentumoperator.

However, in that way we would loose the uniquenessof sucha wave function.

Let u,
2 :M —+ C’ be C

1-functionson M and U
12 be closed 1-forms onM.

We say that the pair (u1, U,) is equivalentto the pair (u2,U2) if

10

20 u2(x) = u1(x)exp (211if (U, — U2))

wherew is a pathjoining x0andx.

The abovedefinition does not dependon the choice of w. We will use the

abbreviation[u, U] for equivalenceclassesof this relation. u will be called the
Bloch factorand U-the magneticform. This terminologyemphazisesthe connec-
tion with theBlochtheoremin solid statephysics[12].

THEOREM 3. There is a bijection betweenthe set ofquasiperiodic(with respect
to somecharacter0 of111(M))functionst,Li :P—~C

1and theset ofclasses[u, U].
Moreover

a) u*u=~*~

b) u*(X + 2111 (X, U))u =

whereX - a vectorfield on M

X - the(unique)lift ofX to P.

Proof We put
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0([w]) =

where [w] E 11,(M),w E [w], (u, U) E [u, U]. Then,

0 - is independenton the choiceof w, sinceU is closed
0 - is independenton the choiceof U
0 - is a characterbecause

2nif . ~ 2Ilif 0 211if 0

=e WI W
2 =e e W2 =

Let P 3p = [s],where[~] is a homotopyclassof pahtsfrom x0 to fI(p).

We put

~l’(p) : = e
2n~J~u(I1(p)).Then

- is independenton the choiceof ~ E [~I
- is independenton the choiceof(u, U) E [u, U] because

e2fut~~u
1(fl(p)) = e

2t02e2flhb6~02u
1(H(p)) =

= e
2~’1~2u

2(fI(p))

- is quasiperiodicbecause

(p(w])=e
2flhb6wOu(11(p))=e2Iw0e2hl~~~u(7r(p))=

= 0([w]) ~(p).

Thus we haveproved 10. Insteadof performingsimilar calculation to prove
2°we refer to Theoremof Behnke-Stein[13] which in fact containsthe same

ideas.The proveof the equalitiesa), b) is direct. U

To completethe discusionof 0-theorieswe shall describethe approachbased
on line bundlesand flat connectionsconsideredin [6, 14]. When the configura-
tion space is multiply - connectedthen inequivalent realis’ationsof the C.C.R.
are labeled by charactersof 11

1(M). Moreoverthey can be exphicity constructed

in terms of geometricalobjects.The following theoremgives us the formal cor-
respondencewith our approach.Let
E1, E2 - betrivial, Hermitiancomplexline bundles

~ ~2 - be flat connectionson E1, E2 preservingHermitianstructures,

- besectionsof E1,E2.
The triplet (E,, a1,s1) will be called equivalent to (E2,a2, ~2~’ if thereexists

an isomorphism0 of bundlesE,, E2 suchthat
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a,=0*a2, ~I=~~2•

The classesof theaboveequivalencerelationare denotedby [E, a, s]

THEOREM 4.

1° The class [E, a, s] definesa character0 of fl1(M) and a quasiperiodic(with
respectto 0)function ‘P :P—+C

1

2°A quasiperiodic (with respect to somecharacter 0 of fl
1(M)) function

C’ definesa class [E, a, s].

Moreover,if [E, a, s] correspondsto i~then

(s,s)= ~

(s,ass)= ~ whereX is a vectorfield on M and ~ its lifting

toP.

Proof Let (E, a,s)E [E, a,s] and let ~~E’ fl,M) denotethe principal S’ bundle

of orthogonal frames for (E, a, s). Then E is an associatedvector bundle of

~~E’ 11, M). Let us note that

a) Everysections of E definesanequivariantfunction K(s) : —f C’ suchthat

K(s)(p~g)=gK(s)p where PEPE, gES’.

Moreoverthe mapK is bijective

b) For any connectiona preservinghermitianstructureof E thereexists a con-

nectionA Ofl ~E’ 11, M) suchthat

a~s=K’XK(s)

whereg is the horizontallifting of X with respectto A. The converseis also

true [15].

Let us choosexo,pOEPE, 11(p0)=x0 and let 6 :(O, hl—s.M be a path such

that 6(0)= x0. The homotopyclassof 6 is an elementof P. We put

=K(S)(~~(1))

where is the horizontallifting of 6 to with respectto A, startingat p0.

This definition is obviously independenton the choiceof (E, a,s) E [E, a, s].
We shall provethat ‘P is quasiperiodic.For any w : [0, 1] —÷Msuchthat w(0) =

= w(1) = x0

0([w]) : =

It is an elementof theholonomygroupof A. Wehave
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= K(s)(&w~(h))= K(s)(~...(1)(1)) =

p
0

=K(s)(~ (l)w (l)/p0)=w (l)/p0K(s)(6 (l))=
p0 p0 p0 p0

= 0([w]) i~([6]).

This end the proof of part 1. In order to prove the conservestatementlet

ustakea quasiperiodicfunction ~ : P —÷ C’.
Let E = PX9C’ be the line bundleassociatedto (P, U, M) with respectto the

representationp9 of fl,(M) in C’ given by the formula:

p0[w]~=O([w])~ [w]Efl1(M) EEC’.

Let us note that (P, U,M) as a principal bundle has an unique connectionA
and moreoverthe quasiperiodicfunction iji is equivariantin the senseof remark

a). Thus, accordingto the remarksa), b) thereexist a naturalconnectiona, and
a naturalsections in E. It is easyto see,that the quasiperiodicfunction on P

determinedthroughthe constructionof part 1 by triplet (E,a, s) is just i~.Now
let (E’, a’, s) define the samei~i as (E,a, s). Forthe proof that (E,a,s) is isomor-
phicto(E’,a’,s)see[16, 17]. U

The above considerationshave strictly topological character. However, to

discuss the influence of the multiple connectivity onto quantum mechanics
in more details it is necessaryto introduce additional structureson M i.e. a

riemanianmetric and a measure.This gives the possibility to investigate the
Hilbert spaceof states,the Hamiltonianoperatorand the algebraof observabhes.
Thereare severalwaysto constructthe Hilbert spaceandthe Hamiltonianopera-
tor according to the representationtheorems. We will discussit in the next

publication.Howeverin any case0 has clearphysicalinterpretation:0 is strictly

conservedquantumquantity.Wewould like to point that:
— 0 is a mathematicalobjectratherthana number
— 0 is a in principle measurable

— The natureof 0 is strictly topological.

2. EXAMPLES

2.1. Rotor (pendulum)[4, 18, 19, 201. This is the simplest,academicexample
in which 0 appears.TheHamiltonianfor this problemis

1 d
2

H=—— —(+cos0)
2 dØ2
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where0 is the anglevariable.
Thus the configuration spaceM = S1 and its universalcoveringP = R’. Since

11,(S,)= Z then the set of charactersis S1.By generalprescriptionwe are looking

for the eigenfunctionin the form

= E
0 ~ where

‘~‘~ :R
1—÷C1suchthat ~

0(x+2fl)=0~0(x) OES’

0 hasaninfluenceon the eigenvaluesof the Hamiltonian

2.2. The Aharonov-Bohmexperiment[21, 22]. Let us consideraninfinite, cylin-

dric solenoid 01 small radius. The magnetic field vanishesoutside the cylinder.

Onecan easily checkthat the wave function of anelectronin the presenceof the
solenoidis givenby

~‘

where0 is a polar anglein theperpendicularplaneof thecylinder.

is a singlevaluedsolution of the free Schrodingerequation
0 is some constantdependingon the radius of solenoid and the magnetudeof

thecurrent.
We seethat ~‘ is multivaluedin accordanceto the theorybecausethe configu-

ration space(the spaceoutsidethe selenoid)is multiply connected.Let usnotice

that 0 (mod 211) i.e. the character,canbe measuredin the quantummechanical
way. Thus it is a quantumnumber.

2.3. Periodic crystal [12]. The configuration space M for an electron in the

periodiccrystal is 3-dim torus T
3. We referto the Bloch theoremwhich summe-

rized the 0-theory in this case. We mentiononly that in the terminology of

solid state physics the spaceof charactersof H,(M) is called the first Brillouin
zone and the elementsof this spacei.e. charactersare called quasi-momenta.

2.4. Yang-Mills field theory over S3, T3 [3, 14, 23]. The configuration space
for Yang-Mills field theorywasintroducedby Singeras the spaceof gaugeequiva-

lent connections.One can compute(see for example[24]) that fl,(M) = Z for
~3 and 11

1(M) = Z x U1(G) x fl,(G) x FI,(G) for T
3 where G is the structural

group of this theory. In the casewhenthe space-likesurfaceis S3 the spaceof
charactersis S’. Theseare the original 0-numbersof [1, 2] (see also [6]). For

the T3 case the part of charactersconnectedwith H,(G) x 11
1(G) x 111(G) are

the electric fluxes of ‘t Hooft. The physical interpretationof thesequantum
numberscanbe find in [25, 26, 27].
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